Historical and future black carbon deposition on the three ice caps: Ice core measurements and model simulations from 1850 to 2100
نویسندگان
چکیده
[1] Ice core measurements in conjunction with climate model simulations are of tremendous value when examining anthropogenic and natural aerosol loads and their role in past and future climates. Refractory black carbon (BC) records from the Arctic, the Antarctic, and the Himalayas are analyzed using three transient climate simulations performed with the Goddard Institute for Space Studies ModelE. Simulations differ in aerosol schemes (bulk aerosols vs. aerosol microphysics) and ocean couplings (fully coupled vs. prescribed ocean). Regional analyses for past (1850–2005) and future (2005–2100) carbonaceous aerosol simulations focus on the Antarctic, Greenland, and the Himalayas. Measurements from locations in the Antarctic show clean conditions with no detectable trend over the past 150 years. Historical atmospheric deposition of BC and sulfur in Greenland shows strong trends and is primarily influenced by emissions from early twentieth century agricultural and domestic practices. Models fail to reproduce observations of a sharp eightfold BC increase in Greenland at the beginning of the twentieth century that could be due to the only threefold increase in the North American emission inventory. BC deposition in Greenland is about 10 times greater than in Antarctica and 10 times less than in Tibet. The Himalayas show the most complicated transport patterns, due to the complex terrain and dynamical regimes of this region. Projections of future climate based on the four CMIP5 Representative Concentration Pathways indicate further dramatic advances of pollution to the Tibetan Plateau along with decreasing BC deposition fluxes in Greenland and the Antarctic.
منابع مشابه
Arctic climate response to forcing from light-absorbing particles in snow and sea ice in CESM
The presence of light-absorbing aerosol particles deposited on arctic snow and sea ice influences the surface albedo, causing greater shortwave absorption, warming, and loss of snow and sea ice, lowering the albedo further. The Community Earth System Model version 1 (CESM1) now includes the radiative effects of light-absorbing particles in snow on land and sea ice and in sea ice itself. We inve...
متن کامل20th-century industrial black carbon emissions altered Arctic climate forcing.
Black carbon (BC) from biomass and fossil fuel combustion alters chemical and physical properties of the atmosphere and snow albedo, yet little is known about its emission or deposition histories. Measurements of BC, vanillic acid, and non-sea-salt sulfur in ice cores indicate that sources and concentrations of BC in Greenland precipitation varied greatly since 1788 as a result of boreal forest...
متن کاملBlack carbon record based on a shallow Himalayan ice core and its climatic implications
A continuous measurement for black carbon (hereafter “BC”) in a 40 m shallow ice core retrieved from the East Rongbuk Glacier (hereafter “ERG”) in the northeast saddle of Mt. Qomolangma (Everest) provided the first historical record of BC deposition during the past ∼50 yrs in the high Himalyas. Apparent increasing trend (smooth average) of BC concentrations was revealed since the mid-1990s. Sea...
متن کاملIce Core Records of Recent Climatic Variability: Grigoriev
Ice cores, 16.5 and 20-meters in length, were recovered under the auspices of a cooperative USSR US glaciological research program on the Grigoriev and It-Tish ice caps in the Tien Shan, Central Asia. These have been analyzed for microparticle concentrations and size distributions, stable isotopic ratios (o18Q and 80), selected chemical species, and Beta radioactivity. The 1)18Q records reveal ...
متن کاملExtended scenarios for glacier melt due to anthropogenic forcing
[1] The IPCC Third Assessment Report (TAR) developed a formula for the global meltwater contribution to sea level rise from Glaciers and Small Ice Caps (GSICs) that is applicable out to 2100. We show that, if applied to times beyond 2100 (as is necessary to assess sea level rise for concentration-stabilization scenarios), the formula imposes an unrealistic upper bound on GSIC melt. A modificati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013